Model-based speech separation: identifying transcription using orthogonality

نویسندگان

  • Siu Wa Lee
  • Frank K. Soong
  • Tan Lee
چکیده

Spectral envelopes and harmonics are the building elements of a speech signal. By estimating these elements, individual speech sources in a mixture observation can be reconstructed and hence separated. Transcription gives the spoken content. More important, it describes the expected sequence of spectral envelopes, if modeling of different speech sounds is acquired. Our recently proposed single-microphone speech separation algorithm exploits this to derive the spectral envelope trajectories of individual sources and remove interference accordingly. The correctness of such transcription becomes critical to the separation performance. This paper investigates the relationship between the correctness of transcription hypotheses and the orthogonality of associated source estimates. An orthogonality measure is introduced to quantify the correlation between spectrograms. Experiments verify that underlying true transcriptions lead to a salient orthogonality distribution, which is distinguishable from the counterfeit transcription one. Accordingly a transcription identification technique is developed, which succeeds in identifying true transcriptions in 99.74% of the experimental trials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Window-disjoint-orthogonality of Speech Sources in Reverberant Humanoid Scenarios

Many speech source separation approaches are based on the assumption of orthogonality of speech sources in the time-frequency domain. The target speech source is demixed from the mixture by applying the ideal binary mask to the mixture. The time-frequency orthogonality of speech sources is investigated in detail only for anechoic and artificially mixed speech mixtures. This paper evaluates how ...

متن کامل

Blind Source Separation of Speech Mixtures using a Simple and Computationally Efficient Time-Frequency Approach

A very simple and extremely computationally efficient algorithm for blind separation of two speech sources from two mixtures is presented in this paper. The algorithm exploits the approximate W-disjoint orthogonality of speech signals and assumes specific sensors (microphones) setting that allows the sources to possess a feature we call cross high-low diversity. Two sources are said to be cross...

متن کامل

STRUCTURAL DAMAGE PROGNOSIS BY EVALUATING MODAL DATA ORTHOGONALITY USING CHAOTIC IMPERIALIST COMPETITIVE ALGORITHM

Presenting structural damage detection problem as an inverse model-updating approach is one of the well-known methods which can reach to informative features of damages. This paper proposes a model-based method for fault prognosis in engineering structures. A new damage-sensitive cost function is suggested by employing the main concepts of the Modal Assurance Criterion (MAC) on the first severa...

متن کامل

Persian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods

Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...

متن کامل

Blind adaptive principal eigenvector beamforming for acoustical source separation

For separating multiple speech signals given a convolutive mixture, time-frequency sparseness of the speech sources can be exploited. In this paper we present a multi-channel source separation method based on the concept of approximate disjoint orthogonality of speech signals. Unlike binary masking of singlechannel signals as e.g. applied in the DUET algorithm we use a likelihood mask to contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009